Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: covidwho-2200324

ABSTRACT

Establishing the rapid and accurate diagnosis of sepsis is a key component to the improvement of clinical outcomes. The ability of analytical platforms to rapidly detect pathogen-associated molecular patterns (PAMP) in blood could provide a powerful host-independent biomarker of sepsis. A novel concept was investigated based on the idea that a pre-bound and fluorescent ligand could be released from lectins in contact with high-affinity ligands (such as PAMPs). To create fluorescent ligands with precise avidity, the kinetically followed TEMPO oxidation of yeast mannan and carbodiimide coupling were used. The chemical modifications led to decreases in avidity between mannan and human collectins, such as the mannan-binding lectin (MBL) and human surfactant protein D (SP-D), but not in porcine SP-D. Despite this effect, these fluorescent derivatives were captured by human lectins using highly concentrated solutions. The resulting fluorescent beads were exposed to different solutions, and the results showed that displacements occur in contact with higher affinity ligands, proving that two-stage competition processes can occur in collectin carbohydrate recognition mechanisms. Moreover, the fluorescence loss depends on the discrepancy between the respective avidities of the recognized ligand and the fluorescent mannan. Chemically modulated fluorescent ligands associated with a diversity of collectins may lead to the creation of diagnostic tools suitable for multiplex array assays and the identification of high-avidity ligands.


Subject(s)
Collectins , Sepsis , Humans , Animals , Swine , Pulmonary Surfactant-Associated Protein D/chemistry , Mannans/metabolism , Ligands , Lectins/metabolism
2.
Drug Dev Ind Pharm ; 48(10): 539-551, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2069979

ABSTRACT

Spike glycoprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) binds angiotensin-converting enzyme-2 (ACE-2) receptors via its receptor-binding domain (RBD) and mediates virus-to-host cell fusion. Recently emerged omicron variant of SARS-CoV-2 possesses around 30 mutations in spike protein where N501Y tremendously increases viral infectivity and transmission. Lectins interact with glycoproteins and mediate innate immunity displaying antiviral, antibacterial, and anticarcinogenic properties. In this study, we analyzed the potential of lectin, and lectin-antibody (spike-specific) complex to inhibit the ACE-2 binding site of wild and N501Y mutated spike protein by utilizing in silico molecular docking and simulation approach. Docking of lectin at reported ACE-2 binding spike-RBD residues displayed the ZDock scores of 1907 for wild and 1750 for N501Y mutated spike-RBD. Binding of lectin with antibody to form proposed dyad complex gave ZDock score of 1174 revealing stable binding. Docking of dyad complex with wild and N501Y mutated spike-RBD, at lectin and antibody individually, showed high efficiency binding hence, effective structural inhibition of spike-RBD. MD simulation of 100 ns of each complex proved high stability of complexes with RMSD values ranging from 0.2 to 1.5 nm. Consistent interactions of lead ACE-2 binding spike residues with lectin during simulation disclosed efficient structural inhibition by lectin against formation of spike RBD-ACE-2 complex. Hence, lectins along with their ability to induce innate immunity against spike glycoprotein can structurally inhibit the spike-RBD when given as lectin-antibody dyad system and thus can be developed into a dual effect treatment against COVID-19. Moreover, the high binding specificity of this system with spike-RBD can be exploited for development of diagnostic and drug-delivery systems.


Subject(s)
COVID-19 Drug Treatment , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2 , Antiviral Agents/pharmacology , Lectins/metabolism , Molecular Docking Simulation , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Protein Structure, Tertiary , Binding Sites , Protein Binding , Antibodies/metabolism
3.
Glycoconj J ; 39(1): 83-97, 2022 02.
Article in English | MEDLINE | ID: covidwho-1813733

ABSTRACT

Plants contain an extended group of lectins differing from each other in their molecular structures, biochemical properties and carbohydrate-binding specificities. The heterogeneous group of plant lectins can be classified in several families based on the primary structure of the lectin domain. All proteins composed of one or more lectin domains, or having a domain architecture including one or more lectin domains in combination with other protein domains can be defined as lectins. Plant lectins reside in different cell compartments, and depending on their location will encounter a large variety carbohydrate structures, allowing them to be involved in multiple biological functions. Over the years lectins have been studied intensively for their carbohydrate-binding properties and biological activities, which also resulted in diverse applications. The present overview on plant lectins especially focuses on the structural and functional characteristics of plant lectins and their applications for crop improvement, glycobiology and biomedical research.


Subject(s)
Lectins , Plant Lectins , Agriculture , Glycomics , Humans , Lectins/metabolism , Plant Lectins/chemistry , Protein Domains
4.
Int J Mol Sci ; 22(16)2021 Aug 05.
Article in English | MEDLINE | ID: covidwho-1662663

ABSTRACT

Coxsackievirus A24 variant (CVA24v) is the primary causative agent of the highly contagious eye infection designated acute hemorrhagic conjunctivitis (AHC). It is solely responsible for two pandemics and several recurring outbreaks of the disease over the last decades, thus affecting millions of individuals throughout the world. To date, no antiviral agents or vaccines are available for combating this disease, and treatment is mainly supportive. CVA24v utilizes Neu5Ac-containing glycans as attachment receptors facilitating entry into host cells. We have previously reported that pentavalent Neu5Ac conjugates based on a glucose-scaffold inhibit CVA24v infection of human corneal epithelial cells. In this study, we report on the design and synthesis of scaffold-replaced pentavalent Neu5Ac conjugates and their effect on CVA24v cell transduction and the use of cryogenic electron microscopy (cryo-EM) to study the binding of these multivalent conjugates to CVA24v. The results presented here provide insights into the development of Neu5Ac-based inhibitors of CVA24v and, most significantly, the first application of cryo-EM to study the binding of a multivalent ligand to a lectin.


Subject(s)
Antiviral Agents/pharmacology , Coxsackievirus Infections/diet therapy , Enterovirus C, Human/drug effects , N-Acetylneuraminic Acid/pharmacology , Conjunctivitis, Acute Hemorrhagic/drug therapy , Conjunctivitis, Acute Hemorrhagic/metabolism , Conjunctivitis, Acute Hemorrhagic/virology , Coxsackievirus Infections/metabolism , Coxsackievirus Infections/virology , Glucose/metabolism , Humans , Lectins/metabolism , Ligands , Polysaccharides/metabolism , Receptors, Virus/metabolism
5.
Nature ; 598(7880): 342-347, 2021 10.
Article in English | MEDLINE | ID: covidwho-1379317

ABSTRACT

SARS-CoV-2 infection-which involves both cell attachment and membrane fusion-relies on the angiotensin-converting enzyme 2 (ACE2) receptor, which is paradoxically found at low levels in the respiratory tract1-3, suggesting that there may be additional mechanisms facilitating infection. Here we show that C-type lectin receptors, DC-SIGN, L-SIGN and the sialic acid-binding immunoglobulin-like lectin 1 (SIGLEC1) function as attachment receptors by enhancing ACE2-mediated infection and modulating the neutralizing activity of different classes of spike-specific antibodies. Antibodies to the amino-terminal domain or to the conserved site at the base of the receptor-binding domain, while poorly neutralizing infection of ACE2-overexpressing cells, effectively block lectin-facilitated infection. Conversely, antibodies to the receptor binding motif, while potently neutralizing infection of ACE2-overexpressing cells, poorly neutralize infection of cells expressing DC-SIGN or L-SIGN and trigger fusogenic rearrangement of the spike, promoting cell-to-cell fusion. Collectively, these findings identify a lectin-dependent pathway that enhances ACE2-dependent infection by SARS-CoV-2 and reveal distinct mechanisms of neutralization by different classes of spike-specific antibodies.


Subject(s)
Antibodies, Neutralizing/immunology , Lectins/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cell Adhesion Molecules/metabolism , Cell Fusion , Cell Line , Cricetinae , Female , Humans , Lectins/immunology , Lectins, C-Type/metabolism , Membrane Fusion , Receptors, Cell Surface/metabolism , SARS-CoV-2/immunology , Sialic Acid Binding Ig-like Lectin 1/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
6.
Int J Mol Sci ; 22(13)2021 Jun 22.
Article in English | MEDLINE | ID: covidwho-1304656

ABSTRACT

The monolayer character of two-dimensional materials predestines them for application as active layers of sensors. However, their inherent high sensitivity is always accompanied by a low selectivity. Chemical functionalization of two-dimensional materials has emerged as a promising way to overcome the selectivity issues. Here, we demonstrate efficient graphene functionalization with carbohydrate ligands-chitooligomers, which bind proteins of the lectin family with high selectivity. Successful grafting of a chitooligomer library was thoroughly characterized, and glycan binding to wheat germ agglutinin was studied by a series of methods. The results demonstrate that the protein quaternary structure remains intact after binding to the functionalized graphene, and that the lectin can be liberated from the surface by the addition of a binding competitor. The chemoenzymatic assay with a horseradish peroxidase conjugate also confirmed the intact catalytic properties of the enzyme. The present approach thus paves the way towards graphene-based sensors for carbohydrate-lectin binding.


Subject(s)
Graphite/chemistry , Lectins/metabolism , Polysaccharides/chemistry , Horseradish Peroxidase , Lectins/analysis , Polysaccharides/metabolism , Protein Binding , Protein Structure, Quaternary
7.
Front Immunol ; 12: 650331, 2021.
Article in English | MEDLINE | ID: covidwho-1156125

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection represents a global health crisis. Immune cell activation via pattern recognition receptors has been implicated as a driver of the hyperinflammatory response seen in COVID-19. However, our understanding of the specific immune responses to SARS-CoV-2 remains limited. Mast cells (MCs) and eosinophils are innate immune cells that play pathogenic roles in many inflammatory responses. Here we report MC-derived proteases and eosinophil-associated mediators are elevated in COVID-19 patient sera and lung tissues. Stimulation of viral-sensing toll-like receptors in vitro and administration of synthetic viral RNA in vivo induced features of hyperinflammation, including cytokine elevation, immune cell airway infiltration, and MC-protease production-effects suppressed by an anti-Siglec-8 monoclonal antibody which selectively inhibits MCs and depletes eosinophils. Similarly, anti-Siglec-8 treatment reduced disease severity and airway inflammation in a respiratory viral infection model. These results suggest that MC and eosinophil activation are associated with COVID-19 inflammation and anti-Siglec-8 antibodies are a potential therapeutic approach for attenuating excessive inflammation during viral infections.


Subject(s)
Antigens, CD/immunology , Antigens, Differentiation, B-Lymphocyte/immunology , COVID-19/immunology , Eosinophils/immunology , Lectins/immunology , Mast Cells/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Viruses/immunology , SARS-CoV-2/immunology , Toll-Like Receptors/immunology , Animals , Antibodies, Monoclonal/pharmacology , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , Antigens, Differentiation, B-Lymphocyte/metabolism , COVID-19/metabolism , COVID-19/prevention & control , COVID-19/virology , Case-Control Studies , Cytokines/metabolism , Disease Models, Animal , Eosinophils/drug effects , Eosinophils/metabolism , Eosinophils/virology , Host-Pathogen Interactions , Humans , Lectins/antagonists & inhibitors , Lectins/genetics , Lectins/metabolism , Mast Cells/drug effects , Mast Cells/metabolism , Mast Cells/virology , Mice, Transgenic , Peptide Hydrolases/metabolism , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Toll-Like Receptors/metabolism
8.
Biomolecules ; 11(3)2021 03 22.
Article in English | MEDLINE | ID: covidwho-1151739

ABSTRACT

Global processes, such as climate change, frequent and distant travelling and population growth, increase the risk of viral infection spread. Unfortunately, the number of effective and accessible medicines for the prevention and treatment of these infections is limited. Therefore, in recent years, efforts have been intensified to develop new antiviral medicines or vaccines. In this review article, the structure and activity of the most promising antiviral cyanobacterial products are presented. The antiviral cyanometabolites are mainly active against the human immunodeficiency virus (HIV) and other enveloped viruses such as herpes simplex virus (HSV), Ebola or the influenza viruses. The majority of the metabolites are classified as lectins, monomeric or dimeric proteins with unique amino acid sequences. They all show activity at the nanomolar range but differ in carbohydrate specificity and recognize a different epitope on high mannose oligosaccharides. The cyanobacterial lectins include cyanovirin-N (CV-N), scytovirin (SVN), microvirin (MVN), Microcystisviridis lectin (MVL), and Oscillatoria agardhii agglutinin (OAA). Cyanobacterial polysaccharides, peptides, and other metabolites also have potential to be used as antiviral drugs. The sulfated polysaccharide, calcium spirulan (CA-SP), inhibited infection by enveloped viruses, stimulated the immune system's response, and showed antitumor activity. Microginins, the linear peptides, inhibit angiotensin-converting enzyme (ACE), therefore, their use in the treatment of COVID-19 patients with injury of the ACE2 expressing organs is considered. In addition, many cyanobacterial extracts were revealed to have antiviral activities, but the active agents have not been identified. This fact provides a good basis for further studies on the therapeutic potential of these microorganisms.


Subject(s)
Antiviral Agents/chemistry , Cyanobacteria/chemistry , HIV/drug effects , Lectins/pharmacology , Polysaccharides/pharmacology , SARS-CoV-2/drug effects , Simplexvirus/drug effects , Anti-HIV Agents/pharmacology , Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/pharmacology , Carbohydrates/chemistry , Carbohydrates/pharmacology , Cyanobacteria/metabolism , HIV Infections/drug therapy , Humans , Lectins/chemistry , Lectins/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , COVID-19 Drug Treatment
9.
Pharmacol Rev ; 73(2): 792-827, 2021 04.
Article in English | MEDLINE | ID: covidwho-1125571

ABSTRACT

The complement system was discovered at the end of the 19th century as a heat-labile plasma component that "complemented" the antibodies in killing microbes, hence the name "complement." Complement is also part of the innate immune system, protecting the host by recognition of pathogen-associated molecular patterns. However, complement is multifunctional far beyond infectious defense. It contributes to organ development, such as sculpting neuron synapses, promoting tissue regeneration and repair, and rapidly engaging and synergizing with a number of processes, including hemostasis leading to thromboinflammation. Complement is a double-edged sword. Although it usually protects the host, it may cause tissue damage when dysregulated or overactivated, such as in the systemic inflammatory reaction seen in trauma and sepsis and severe coronavirus disease 2019 (COVID-19). Damage-associated molecular patterns generated during ischemia-reperfusion injuries (myocardial infarction, stroke, and transplant dysfunction) and in chronic neurologic and rheumatic disease activate complement, thereby increasing damaging inflammation. Despite the long list of diseases with potential for ameliorating complement modulation, only a few rare diseases are approved for clinical treatment targeting complement. Those currently being efficiently treated include paroxysmal nocturnal hemoglobinuria, atypical hemolytic-uremic syndrome, myasthenia gravis, and neuromyelitis optica spectrum disorders. Rare diseases, unfortunately, preclude robust clinical trials. The increasing evidence for complement as a pathogenetic driver in many more common diseases suggests an opportunity for future complement therapy, which, however, requires robust clinical trials; one ongoing example is COVID-19 disease. The current review aims to discuss complement in disease pathogenesis and discuss future pharmacological strategies to treat these diseases with complement-targeted therapies. SIGNIFICANCE STATEMENT: The complement system is the host's defense friend by protecting it from invading pathogens, promoting tissue repair, and maintaining homeostasis. Complement is a double-edged sword, since when dysregulated or overactivated it becomes the host's enemy, leading to tissue damage, organ failure, and, in worst case, death. A number of acute and chronic diseases are candidates for pharmacological treatment to avoid complement-dependent damage, ranging from the well established treatment for rare diseases to possible future treatment of large patient groups like the pandemic coronavirus disease 2019.


Subject(s)
COVID-19/epidemiology , COVID-19/physiopathology , Complement System Proteins/physiology , Rare Diseases/physiopathology , Collectins/metabolism , Complement Activating Enzymes/metabolism , Complement C3/metabolism , Complement Inactivating Agents/pharmacology , Genetic Therapy/methods , Humans , Inflammation Mediators/metabolism , Lectins/metabolism , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Pandemics , SARS-CoV-2 , Synapses/metabolism
10.
J Biol Chem ; 296: 100375, 2021.
Article in English | MEDLINE | ID: covidwho-1062444

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged during the last months of 2019, spreading throughout the world as a highly transmissible infectious illness designated as COVID-19. Vaccines have now appeared, but the challenges in producing sufficient material and distributing them around the world means that effective treatments to limit infection and improve recovery are still urgently needed. This review focuses on the relevance of different glycobiological molecules that could potentially serve as or inspire therapeutic tools during SARS-CoV-2 infection. As such, we highlight the glycobiology of the SARS-CoV-2 infection process, where glycans on viral proteins and on host glycosaminoglycans have critical roles in efficient infection. We also take notice of the glycan-binding proteins involved in the infective capacity of virus and in human defense. In addition, we critically evaluate the glycobiological contribution of candidate drugs for COVID-19 therapy such as glycans for vaccines, anti-glycan antibodies, recombinant lectins, lectin inhibitors, glycosidase inhibitors, polysaccharides, and numerous glycosides, emphasizing some opportunities to repurpose FDA-approved drugs. For the next-generation drugs suggested here, biotechnological engineering of new probes to block the SARS-CoV-2 infection might be based on the essential glycobiological insight on glycosyltransferases, glycans, glycan-binding proteins, and glycosidases related to this pathology.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/prevention & control , Drug Repositioning , Glycoside Hydrolase Inhibitors/therapeutic use , Glycosyltransferases/antagonists & inhibitors , Viral Proteins/antagonists & inhibitors , Antibodies, Neutralizing/therapeutic use , Antiviral Agents/chemistry , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Drug Design , Drug Discovery , Gene Expression , Glycomics/methods , Glycosaminoglycans/chemistry , Glycosaminoglycans/immunology , Glycosaminoglycans/metabolism , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Glycosyltransferases/immunology , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Lectins/chemistry , Lectins/immunology , Lectins/metabolism , Polysaccharides/chemistry , Polysaccharides/immunology , Polysaccharides/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Signal Transduction , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/immunology
11.
Viruses ; 13(1)2021 Jan 08.
Article in English | MEDLINE | ID: covidwho-1016260

ABSTRACT

Glycosylation, being the most abundant post-translational modification, plays a profound role affecting expression, localization and function of proteins and macromolecules in immune response to infection. Presented are the findings of a transcriptomic analysis performed using high-throughput functional genomics data from public repository to examine the altered transcription of the human glycosylation machinery in response to SARS-CoV-2 stimulus and infection. In addition to the conventional in silico functional enrichment analysis methods we also present results from the manual analysis of biomedical literature databases to bring about the biological significance of glycans and glycan-binding proteins in modulating the host immune response during SARS-CoV-2 infection. Our analysis revealed key immunomodulatory lectins, proteoglycans and glycan epitopes implicated in exerting both negative and positive downstream inflammatory signaling pathways, in addition to its vital role as adhesion receptors for SARS-CoV-2 pathogen. A hypothetical correlation of the differentially expressed human glycogenes with the altered host inflammatory response and the cytokine storm-generated in response to SARS-CoV-2 pathogen is proposed. These markers can provide novel insights into the diverse roles and functioning of glycosylation pathways modulated by SARS-CoV-2, provide avenues of stratification, treatment, and targeted approaches for COVID-19 immunity and other viral infectious agents.


Subject(s)
COVID-19/metabolism , Polysaccharides/metabolism , SARS-CoV-2/physiology , Biomarkers/metabolism , COVID-19/genetics , COVID-19/immunology , COVID-19/pathology , Databases, Genetic , Epitopes/genetics , Epitopes/metabolism , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Glycosylation , Host-Pathogen Interactions , Humans , Inflammation , Lectins/genetics , Lectins/metabolism , Polysaccharides/genetics , Signal Transduction
12.
Transl Res ; 231: 55-63, 2021 05.
Article in English | MEDLINE | ID: covidwho-939331

ABSTRACT

Although some evidence showed the activation of complement systems in COVID-19 patients, proinflammatory status and lectin pathway remain unclear. Thus, the present study aimed to demonstrate the role of MBL and ficolin-3 in the complement system activation and compared to pandemic Influenza A virus H1N1 subtype infection (H1N1pdm09) and control patients. A total of 27 lungs formalin-fixed paraffin-embedded samples (10 from H1N1 group, 6 from the COVID-19 group, and 11 from the control group) were analyzed by immunohistochemistry using anti-IL-6, TNF-alfa, CD163, MBL e FCN3 antibodies. Genotyping of target polymorphisms in the MBL2 gene was performed by real-time PCR. Proinflammatory cytokines such as IL-6 and TNF-alpha presented higher tissue expression in the COVID-19 group compared to H1N1 and control groups. The same results were observed for ICAM-1 tissue expression. Increased expression of the FCN3 was observed in the COVID-19 group and H1N1 group compared to the control group. The MBL tissue expression was higher in the COVID-19 group compared to H1N1 and control groups. The genotypes AA for rs180040 (G/A), GG for rs1800451 (G/A) and CC for rs5030737 (T/C) showed a higher prevalence in the COVID-19 group. The intense activation of the lectin pathway, with particular emphasis on the MBL pathway, together with endothelial dysfunction and a massive proinflammatory cytokines production, possibly lead to a worse outcome in patients infected with SARS-Cov-2. Moreover, 3 SNPs of our study presented genotypes that might be correlated with high MBL tissue expression in the COVID-19 pulmonary samples.


Subject(s)
COVID-19/pathology , Lectins/metabolism , Lung Injury/metabolism , Lung Injury/pathology , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Autopsy , Case-Control Studies , Complement Activation/physiology , Cytokines/genetics , Cytokines/metabolism , Female , Genotype , Humans , Immunohistochemistry , Influenza A Virus, H1N1 Subtype , Influenza, Human/metabolism , Influenza, Human/pathology , Lung/pathology , Lung/virology , Lung Injury/virology , Male , Middle Aged , Polymorphism, Single Nucleotide , Young Adult
13.
Comp Immunol Microbiol Infect Dis ; 74: 101581, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-926806

ABSTRACT

In this study, primary and immortalized bovine intestinal epithelial cells (BIECs) were characterized for the expression of surface carbohydrate moieties. Primary BIEC-c4 cells showed staining greater than 90 % for 16 lectins but less than 50 % staining for four lectins. Immortalized BIECs showed significantly different lectin binding profile for few lectins compared to BIEC-c4 cells. BIEC-c4 cells were studied for infectivity to E. coli, Salmonella enterica, bovine rotavirus, bovine coronavirus, and bovine viral diarrhea virus. Bovine strain E. coli B41 adhered to BIEC-c4 cells and Salmonella strains S. Dublin and S. Mbandaka showed strong cell invasion. BIEC-c4 cells were susceptible to bovine rotavirus. LPS stimulation upregulated IL-10, IL-8, and IL-6 expression and Poly I:C upregulated TLR 8 and TLR 9 expression. This study provides important knowledge on the glycoconjugate expression profile of primary and immortalized BIECs and infectivity and immune responses of primary BIECs to bacterial and viral pathogens or ligands.


Subject(s)
Cell Line , Epithelial Cells/immunology , Epithelial Cells/microbiology , Lectins/metabolism , Toll-Like Receptors/immunology , Animals , Cattle , Coronavirus, Bovine , Diarrhea Viruses, Bovine Viral , Escherichia coli , Immunity , Interleukins/immunology , Rotavirus , Salmonella enterica
14.
Glycobiology ; 31(4): 358-371, 2021 05 03.
Article in English | MEDLINE | ID: covidwho-889549

ABSTRACT

The emergence of a new human coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has imposed great pressure on the health system worldwide. The presence of glycoproteins on the viral envelope opens a wide range of possibilities for the application of lectins to address some urgent problems involved in this pandemic. In this work, we discuss the potential contributions of lectins from nonmammalian sources in the development of several fields associated with viral infections, most notably COVID-19. We review the literature on the use of nonmammalian lectins as a therapeutic approach against members of the Coronaviridae family, including recent advances in strategies of protein engineering to improve their efficacy. The applications of lectins as adjuvants for antiviral vaccines are also discussed. Finally, we present some emerging strategies employing lectins for the development of biosensors, microarrays, immunoassays and tools for purification of viruses from whole blood. Altogether, the data compiled in this review highlight the importance of structural studies aiming to improve our knowledge about the basis of glycan recognition by lectins and its repercussions in several fields, providing potential solutions for complex aspects that are emerging from different health challenges.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Carbohydrate Metabolism/drug effects , Lectins/metabolism , Polysaccharides/metabolism , SARS-CoV-2/drug effects , COVID-19/virology , Humans
15.
Proc Natl Acad Sci U S A ; 117(41): 25759-25770, 2020 10 13.
Article in English | MEDLINE | ID: covidwho-807358

ABSTRACT

Human coronaviruses OC43 and HKU1 are respiratory pathogens of zoonotic origin that have gained worldwide distribution. OC43 apparently emerged from a bovine coronavirus (BCoV) spillover. All three viruses attach to 9-O-acetylated sialoglycans via spike protein S with hemagglutinin-esterase (HE) acting as a receptor-destroying enzyme. In BCoV, an HE lectin domain promotes esterase activity toward clustered substrates. OC43 and HKU1, however, lost HE lectin function as an adaptation to humans. Replaying OC43 evolution, we knocked out BCoV HE lectin function and performed forced evolution-population dynamics analysis. Loss of HE receptor binding selected for second-site mutations in S, decreasing S binding affinity by orders of magnitude. Irreversible HE mutations led to cooperativity in virus swarms with low-affinity S minority variants sustaining propagation of high-affinity majority phenotypes. Salvageable HE mutations induced successive second-site substitutions in both S and HE. Apparently, S and HE are functionally interdependent and coevolve to optimize the balance between attachment and release. This mechanism of glycan-based receptor usage, entailing a concerted, fine-tuned activity of two envelope protein species, is unique among CoVs, but reminiscent of that of influenza A viruses. Apparently, general principles fundamental to virion-sialoglycan interactions prompted convergent evolution of two important groups of human and animal pathogens.


Subject(s)
Coronavirus/physiology , Hemagglutinins, Viral/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Fusion Proteins/genetics , Virion/metabolism , Animals , Biological Evolution , Cell Line , Coronavirus/genetics , Coronavirus/metabolism , Coronavirus Infections/virology , Coronavirus OC43, Human/genetics , Coronavirus OC43, Human/metabolism , Coronavirus OC43, Human/physiology , Coronavirus, Bovine/genetics , Coronavirus, Bovine/metabolism , Coronavirus, Bovine/physiology , Hemagglutinins, Viral/chemistry , Hemagglutinins, Viral/metabolism , Humans , Lectins/genetics , Lectins/metabolism , Mice , Mutation , Protein Binding , Protein Domains , Receptors, Virus/metabolism , Selection, Genetic , Sialic Acids/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/metabolism , Virion/genetics , Virus Attachment , Virus Release
16.
Med Hypotheses ; 144: 110168, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-696328

ABSTRACT

SARS-CoV-2 interaction with the ACE-2 receptor cannot alone explain the demography and remarkable variation in clinical progression of Covid-19 infection. Unlike SARS-CoV, the cause of SARS, several SARS-CoV-2 spike glycans contain sialic acid residues. In contrast to the SARS secreted glycoprotein (SGP), SARS-CoV-2 SGP are thus potential ligands for Sialic acid-binding Siglecs on host immune cells, known to regulate immune function. Such SARS-CoV-2 glycoproteins would contribute to immune deviation. CD33-related Siglecs are important immune regulators. Siglec-5 and -14 are paired receptors with opposed actions on the NLRP3 inflammasome, which is critical in early viral clearance. SGP binding in persons of Siglec-14 null genotype (30-70% in Black, Asian and Minority Ethnic (BAME) persons, 10% in North Europeans) would induce unopposed inhibitory signalling, causing viral persistence through inflammasome inhibition. Siglec-3 (CD33) and Siglec-5 are expressed on CD33 myeloid derived suppressor cells (CD33 MDSC). Immunosuppressive CD33 MDSC populations are increased in all groups at risk of severe Covid-19 infection. CD33 expression is increased in persons with the CD33 rs3865444 CC allele, associated with Alzheimer's disease, who would thus show enhanced susceptibility. Viral SGP ligation of CD33, potentially in conjunction with Siglec-5, would promote expansion of CD33 MDSC cells, as occurs in cancers but at much greater scale. CD33 is expressed on CNS microglia, potentially activated by SGP penetration through the porous cribriform plate to cause anosmia. Genotyping of severe or fatal Covid-19 cases can confirm or refute this pathophysiological mechanism. Early data have confirmed extremely high-level increase of CD33 MDSC numbers in severe Covid-19 infection, consistent with the proposed mechanism.


Subject(s)
Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , COVID-19/metabolism , COVID-19/virology , Lectins/metabolism , Sialic Acid Binding Ig-like Lectin 3/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Alleles , Antiviral Agents/therapeutic use , COVID-19/immunology , Child , Disease Progression , Female , Genotype , Humans , Immunity, Innate , Inflammasomes , Inflammation , Ligands , Male , Models, Theoretical , Mutation , Polymorphism, Genetic , Polysaccharides/chemistry , Protein Binding , SARS-CoV-2 , Sex Factors , Systemic Inflammatory Response Syndrome/immunology
17.
Int J Mol Sci ; 21(12)2020 Jun 26.
Article in English | MEDLINE | ID: covidwho-627906

ABSTRACT

The recently emerged SARS-CoV-2 is the cause of the global health crisis of the coronavirus disease 2019 (COVID-19) pandemic. No evidence is yet available for CoV infection into hosts upon zoonotic disease outbreak, although the CoV epidemy resembles influenza viruses, which use sialic acid (SA). Currently, information on SARS-CoV-2 and its receptors is limited. O-acetylated SAs interact with the lectin-like spike glycoprotein of SARS CoV-2 for the initial attachment of viruses to enter into the host cells. SARS-CoV-2 hemagglutinin-esterase (HE) acts as the classical glycan-binding lectin and receptor-degrading enzyme. Most ß-CoVs recognize 9-O-acetyl-SAs but switched to recognizing the 4-O-acetyl-SA form during evolution of CoVs. Type I HE is specific for the 9-O-Ac-SAs and type II HE is specific for 4-O-Ac-SAs. The SA-binding shift proceeds through quasi-synchronous adaptations of the SA-recognition sites of the lectin and esterase domains. The molecular switching of HE acquisition of 4-O-acetyl binding from 9-O-acetyl SA binding is caused by protein-carbohydrate interaction (PCI) or lectin-carbohydrate interaction (LCI). The HE gene was transmitted to a ß-CoV lineage A progenitor by horizontal gene transfer from a 9-O-Ac-SA-specific HEF, as in influenza virus C/D. HE acquisition, and expansion takes place by cross-species transmission over HE evolution. This reflects viral evolutionary adaptation to host SA-containing glycans. Therefore, CoV HE receptor switching precedes virus evolution driven by the SA-glycan diversity of the hosts. The PCI or LCI stereochemistry potentiates the SA-ligand switch by a simple conformational shift of the lectin and esterase domains. Therefore, examination of new emerging viruses can lead to better understanding of virus evolution toward transitional host tropism. A clear example of HE gene transfer is found in the BCoV HE, which prefers 7,9-di-O-Ac-SAs, which is also known to be a target of the bovine torovirus HE. A more exciting case of such a switching event occurs in the murine CoVs, with the example of the ß-CoV lineage A type binding with two different subtypes of the typical 9-O-Ac-SA (type I) and the exclusive 4-O-Ac-SA (type II) attachment factors. The protein structure data for type II HE also imply the virus switching to binding 4-O acetyl SA from 9-O acetyl SA. Principles of the protein-glycan interaction and PCI stereochemistry potentiate the SA-ligand switch via simple conformational shifts of the lectin and esterase domains. Thus, our understanding of natural adaptation can be specified to how carbohydrate/glycan-recognizing proteins/molecules contribute to virus evolution toward host tropism. Under the current circumstances where reliable antiviral therapeutics or vaccination tools are lacking, several trials are underway to examine viral agents. As expected, structural and non-structural proteins of SARS-CoV-2 are currently being targeted for viral therapeutic designation and development. However, the modern global society needs SARS-CoV-2 preventive and therapeutic drugs for infected patients. In this review, the structure and sialobiology of SARS-CoV-2 are discussed in order to encourage and activate public research on glycan-specific interaction-based drug creation in the near future.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/virology , Evolution, Molecular , Host Microbial Interactions/physiology , Pneumonia, Viral/virology , Receptors, Virus/metabolism , Virus Internalization , Acetylesterase/metabolism , Animals , Betacoronavirus/genetics , Binding Sites , COVID-19 , Cell Line , Coronavirus/genetics , Esterases , Gene Transfer, Horizontal , Glycosaminoglycans/metabolism , Hemagglutinins, Viral/genetics , Humans , Lectins/metabolism , Pandemics , Polysaccharides , Receptors, Virus/chemistry , SARS-CoV-2 , Sialic Acids/chemistry , Sialic Acids/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/physiology , Torovirus , Viral Fusion Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL